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Let independent data (Xi, Yi), i = 1, . . . , n, be observed from the true model

Y = f(X) + ε (∗)

with unknown regression function f and noise variance σ2 = Var(ε) under the usual assumptions.

Assume we fit a regression model

Y = fϑ(X) + ε, ϑ ∈ Θ

by least-squares, which gives an estimator ϑ̂ for the unknown parameter. This least squares estimator

ϑ̂ is obtained by minimizing the residual sum of squares RSS =
∑n

i=1(Yi − fϑ(Xi))2 and estimates

the value ϑ that minimizes

E[(f(X)− fϑ(X))2]

over ϑ ∈ Θ. We only fit the correct model if there exists some ϑ ∈ Θ such that f = fϑ. From the

fit we obtain the fitted values Ŷi = fϑ̂(Xi), i = 1, . . . , n, and define the total sum of squares (TSS),

residual sum of squares (RSS) and regression sum of squares (REGSS) as

TSS =
n∑

i=1

(
Yi − Y

)2
, RSS =

n∑
i=1

(
Yi − Ŷi

)2
, REGSS =

n∑
i=1

(
Ŷi − Ŷ

)2
. (1)

Note that in linear models one has Ŷ = Y and then REGSS is often defined as
∑n

i=1(Ŷi − Y )2.

The most common definition of the nonlinear coefficient of determination is

R2 = 1− RSS

TSS
. (2)

For an increasing sample size n → ∞ the coefficient R2 estimates the following term (see Remark 6

below for the derivation),

r2 = 1− E[(f(X)− fϑ(X))2] + σ2

Var(f(X)) + σ2 =
Var(f(X))− E[(f(X)− fϑ(X))2]

Var(f(X)) + σ2 . (3)

Remark 1. If the true model is fitted, i. e. if we have fϑ = f , then asymptotically (n→∞) we have

r2 =
Var(f(X))

Var(f(X)) + σ2 . (4)

Remark 2. From formula (4) we see that R2 is sensitive to changes in the variance σ2 of the noise,

even if we fit the true model. This can result in misinterpretations. However, as can be seen from (3),
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r2 gets larger with a better fit (i. e. smaller values of E[(f(X)− fϑ(X))2]) and therefore indeed could

be used for comparison of models. But its value is difficult to interpret and can even be negative.

Remark 3. The measure R2 compares the performed fit with the fit available by a constant regression

function (the “neutral standard” estimated by the mean Y ). For observations obtained from sigmoidal

models as considered in the paper at hand that are far from a constant model, R2 resulted in values

close to 1, even for incorrect models. A large value of R2 should therefore not be misinterpreted as

indication of a correct model fit.

Remark 4. One should be even more careful when using the coefficient of determination from

statistical software, when it is not clear how R2 is calculated. Sometimes the following alternative

definitions are used,

R2
1 =

REGSS

TSS
, R2

2 =
REGSS

REGSS +RSS
(5)

which for an increasing sample size n→∞ estimate the following terms, respectively, (see Remark 6

below for the derivation)

r21 =
Var(fϑ(X))

Var(f(X)) + σ2 , r22 =
Var(fϑ(X))

Var(fϑ(X)) + E[(f(X)− fϑ(X))2] + σ2 . (6)

We see from formula (6) that both R2
1 and R2

2 should not be used to compare models. A measure

suitable to compare models (with respect to the least squares criterion) should give larger values when

E[(f(X) − fϑ(X))2] gets smaller by choice of a better model {fϑ|ϑ ∈ Θ}. Neither r21 nor r22 fulfill

that requirement (for r22 note that with the change of the model also Var(fϑ(X)) may change). It can

already be seen for finite sample sizes n from the definitions (2) and (5) that in general only R2 gets

smaller for a smaller RSS due to a change of the model. Moreover, R2
1 can assume values larger than

1.

Remark 5. In linear models with regression function fϑ(X) = g(X)Tϑ, where g is a known function,

one has TSS = REGSS +RSS and hence, R2 = R2
1 = R2

2. But even then, R2 is sensitive to changes

in σ2.

Remark 6. Derivation of formulas (3) and (6): Consider the definitions in (1), (2) and (5).

The term 1
n

∑n
i=1(Yi − Y )2 estimates Var(Y ) = Var(f(X)) + σ2.

Similarly, Ŷi estimates fϑ(Xi), the term 1
n

∑n
i=1(Ŷi − Ŷ )2 estimates Var(fϑ(X)).

Finally, Yi− Ŷi = f(Xi)− Ŷi + εi estimates f(Xi)−fϑ(Xi) + εi, and hence, 1
n

∑n
i=1(Yi− Ŷi)2 estimates

the expectation E[(f(X)− fϑ(X) + ε)2] = E[(f(X)− fϑ(X))2] + σ2.

Remark 7. In the main article data were generated as follows. Original data were fitted with model

L3 from Formula 3 in the main article. Those fitted values ŷ (at covariate X) were then used as values

f(X) in model (*) and were perturbed by homoscedastic Gaussian noise ε with variance σ2, which

gave data y following model (*) with known true model L3. Different models were then fitted to those

data.


